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S~ ABSTRACT

~ N

) If X and Y are random variables such that P(X>Y) =1 and
the conditional distribution of Y given X is binomial, then Moran
(1952) showed that Y and (X~Y) are independent if X is Poisson.
7},2 ioum'ri}Jﬁe-extendsMoran's result to a more general typs of conditional

distribution of Y given X, using only partial independence of Y

and X-Y. This provides a generalization of a recent result of
Janardhan and Rao (1982) on the characterization of generalized
Polya-Eggenberger distribution. A variant of Moran's theorem is
proved which generalizes the results of Patil and Seshadri (1964)
on the characterization of the distribution of a random variable
X based on some conditions on the conditional distribution of Y

given X and the independence of Y and X-Y.
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1. INTRODUCTION

If X and Y are random variables such that P(X>Y) =1, X is
Poisson and the conditional distribution of Y given X=2 is binom-
ial with parameters z and p, 2 simple calculation shows that X-Y
and Y are independent and Poisson. Moran (1952) proved the follow-

ing converse result. Let
n, r n=r
P(X=n, Y=r) =(r)pn(1-pn) 8,° r=0,1,...,n; n>0 (1.1)

where gn-P(X=n), with & <1, and P, € (0,1) and fixed for each n.
Then Y and (X-Y) are independent iff P, " constant Independent of
n, and X is Poisson. _

Chatterji (1963) proved the same result by replacing (1.1) by

the weaker conditions
P(X=r,Y=r)=p_
» prgr

™+
P(X=rH, Y=rx) = (r+1)p] (L -p_, e,

P(X=r+2, Y=1) =2 (1) (H'Z)p:_._z(l-pr_,_z)zgﬁz. (1.2)
r = 0,1,2,...

Recently, some extensions of Moran's result have been ob-
tained by Gerber (1980) and Janardhan and Rao (1982). In this
paper, we prove some general results which provide some exten-
sions and refinements of the results of the' above quoted authors.
We shall refer to their work in the remarks following the main

theorems.

2. AN EXTENSION OF MORAN'S RESULT

Let {(an,bn,hn): n=0,1,...} be a sequence of real vectors

such that a >0, b >0, h >0 for all n>0 with b_,b. and b, > 0.
n n— n - 0’1 2

Define the family of conditional distributions

Flrln) = iy mr Tl @.1)

r=0,1,...,n; n>0
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where c are such that F(1|n)+...+F(n|n) =1, n>0. We prove the
following general theorem.
Theorem 2.1. Let (X,Y) be a 2-vector random variable with non~
negative integer components, and denote P(X =n) =8, and P(Y-r|x-n)
= S(rln). Assume that P(X=Q) = go<1 and S(r[n) = F(rln) as de-
fined in (2.1). Then the following are equivalent:

(1) P(Y=r|X=Y) =P(Y=r|X=Y+l) = P(Y=r|X=Y+2), r=0,1,...

, n n
(ii) hn'A o« and gn=(go/c0)cn8 ,n=0,1,...,for
some A, @« and B>0,
(iii) Y is independent of X-Y.
Proof., It is easy to check (ii) => (iif) => (i). So, it is suffi-

cient to show that (i) => (ii) to prove the theorem. Suppose that
(1) is valid. Then

g s(rlr) g _.S(r|r+l) g S(r|r+2)
L rtl +2
P (X=Y) = P (X=Y+1) = P (X=Y+2) » T=0,1,... (2.2)

In view of the assumptions imposed on the sequence {én,bn,hn):
n>0}, (2.2) implies that g, >0 for all r>0. Consequently

ntl g

Btz Spv1l _ _P(x=v+1) “r+1 20

g c P (X=Y) r b
1 r+2 hﬂ_2 1l ¢
r-1
h b
P(X=Y+2 1 1
E PEX.Y+1)) r-z —b ,1‘:-0,1,... (2;3)

h 2

+2
and hence

h 2 b.b 1/2
r+2 _ | P (X=Y+1) 02 -
_'hr+1 l:P(X;-Y)P(X-Y*-Z) bzl o (SaY)s r-O,l....

1
which implies that

ht-Aa [ r-l'z’oon &'a)-

for some positive constant A, Suhstituting (2.4} in (2,3] leads

to

-




4
8 g
Hz = B crbl’ r ’0,1,..-
Crt2 r+l

where B = b A aP(X-Y+1)/blP(an). Hence, using (2.2) with r=0

0
8 g
_Ea—o.sr, r-l’z,...
C c
T 0.

which completes the proof.

The following corollary is an imporved version of Moran's
result.
Corollary 1. Let (X,Y) be as in Theorem 2.1 with

S(_r|n).=(2)_p:(l—pn).n-r, r=0a,1,,..,0; nrQ @.5)

for some fixed sequence {pn: P, € @,1}, n=0,1,...}. Then
Theorem 2.1 holds with (i} replaced by
(i)' p, = constant independently of n and {gn} is a
Poisson distributien.

Proof. Note that (2.5) can be written as

P 1%
n,,a ,r/2,n .-(n-r)/2
(r)(i:E;) Cﬂ;i?

S(rln) = ~n/2 » T=0,1,...,n; n>0.

p, (1-p )1

This 1is: of the form (2.1) with a = bn = (n!)-l and

pn 1/2 [Pn(1°Pn) ]-n/Z
hn = CT:;-) and c = - .

If (1) is valid, then Theorem 2.1 implies
[pn/(l-pn)] - aYn’ n=1,2,...

for some positive constants a and y. Hence

-n/2

-n/2 + aYn/Z)a

cn=(Y /n!, n=1,2,...
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which implies that, for appropriate B and B,

/ n/2 n

n -n/2 Y /al, n=0,1,...

g, =BB a o
Since Z gn=1, we must have y=1 in which case {gn} is a Poisson

0
distribution and P, is a constant. This completes the proof.

Remark 1. If the condition (i) in Theorem 2.1 is replaced by

P (Y=r) =P(Y=r|X=Y+j), j=2,3,.s003 0 (2.6)
then the conclusion of the theorem does not remain valid as the

following example shows. Let

»3%ml, n=2,3,...
g = ae A , n =1

e 1+ A),n =0

and

() @p)Fa-op)™™ %, r=0,1,...,n; n22
S(r|n) =

1-
Gefa-m' L =01 0=1

where O0<a, p<1 and A>0. It is easy to see that if (X,Y) is
the corresponding random vector, then it sat{sfies (2.6); but
the distribution of X here is not of the form given in (ii) of
Theorem 2.1.

Remark 2. Gerber (1980) obtained a multivariate generalization

of Moran's theorem with some restrictions on the dis-t:ributions of
the individual random variables. He established a result similar
to the equivalence of our conditions ({i) and (iii) of Theorem
2.1. The main interest of our theorem is in showing the equi-
valence of thecondition (i) with (ii) and (iii).

We prove the following theorem which extends the results
of Janardhan and Rao (1982). We need the following definitiomns.

A non-negative integer valued random variable X is said to have

.t L, L D P . s, A AT T PR R R e T R YRR DL ARG N Y s .
I N N T 3 A S S B T R TR B AR Ry .:1,"‘_4;. O TP S LG oty . T4t 1",
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A a GPED (h,t,c,\), i.e., generalized Polya-Eggenberger distribu~
£ .

A tion, if

S (r,c) )
h(htrt) ~° r .
= PG=E) = K(hyt,0,0) Gipeyy— A s T2 0skoeee @.7
0 for some A>0, h>0, t>0, (ctt) > O such that the distribution

. Y

1 is well defined, with K(h,t,c,1) as the normalizing constant,
o
N where the notation (r,c) —_—
1! m ’ = m(mc)c XY (m*'r-lc)
20 is used. A non-negative integer valued random variable X is said
:'_:‘; to have a GMPD (n,a,b,c,t), i.e., generalized Markov-Polya distri-
j;:l bution if
re

P xeny = (M Ab(atbine) @arre) ) (inore) 7T4C) 2.8
1 T (a+b) (a*rt) (b4mmrr) (a+bnt) (PO

:-:f:: r =0,1,...,n, where a>0, b>0, t>0 such that (ctt) >0. [we

note that neither GPED or GMPD as defined above possesses the

A identifiability property in terms »¢ its parameters. However,

$\ this does not effect our results in the present investigation.
‘ Also it is possible to define these distributions with some of the

parameters as negative. We do not deal with such cases here.]

Y Theorem 2,2. Let {(a_,b ): n=1,2,...} be a sequence of real

AY —— n’ n

3:.:;) vectors with positive components such that a +b =A (a fixed

‘ constant) for all n>l. Further let (X,Y) be a 2-vector random
| variable with non-negative integral components such that g0< 1,
.. -
'f:}, where gnﬂP(X-n), and the survival distribution S(*|n) is GMPD
x:' (n,a_,b_,c,t). Then the following conditions are equivalent:
}1 n°n
'-5 (1) P(Y=r|X=Y) = P(Y=r|X=Y+1) ;P (X~Y=r|Y=Q)=P (X~Y=r|Y=1),
- r=20,1,.... (2.9)
l'.:w
::«.: (ii) X has GPED (A,t,c,A) for some A >0 and a = constant
- independently of n.

i (111) Y and X-Y are independenf:.

‘h.l
‘-gj Proof. It is easy to check (ii) => ({ii) => (i). We shall show
‘3:: that (1) => (iii). Clearly (i) is equivalent to
ey
Y

P r - - , . - ) e O Tu R R T S T Y P
’l""«l»"“'\‘t’f-'q KN "‘:‘_ o i o ‘.{ o p " ) .o{"y o 0 \ !
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0 S(r|r)g /P(X=Y) =S (z|r+l)g /P (R=Y+1) } ’
¥ r=0,1,.... (2.10)
e 5(0|r)g /P(¥=0) =S (1|r+l)g _, /P (¥=1)

The fact that ar’br> 0 for all r>1 and &g <1 implies in view of

o (2.10) that 8> 0 for all r> 0 and hence (2.10) gives

S

e
k-, © [S(z]|r)/s(0]|r)] =dS(x|r+Ll)/S(1|r+1), £ =0,1,2,... (2.11)

< where d = P(Y=1)P (X=Y)/P(X=Y+1)P(Y=0). Since S(r|n) is of the i
v.\ “
- form (2.8) we can rewrite (2.11) as {
R - |
- a (a +rt:+c)(r'1’c) (a +rt+c)(r 1,c)

= £ T - 4 ey Te LeZeees - (2.12)

P + t+ 9 + =4y

3 r (br rt+c) (br_'_l.rt+c)

-j'.f Suppose that (azlbz) # d. Then (2.12) implies that (ar/br) is

(- strictly monotonic which contradicts the assumption that at least

2 two ar's are equal. Then (a2/b2) = d and hence, using (2.12),

ool

_-f we conclude inductively that a = constant independently of r.

L\_\ Substituting in (2.10), we get for appropriate B and A

S rlr

o 841 "B "(rrﬁ‘ 1) 8r

. )

:} - ) (A+rt) Sﬁ'ﬂlt)(ﬁl’C) gr ¢

: (A+T+1t) (At+rt) (r,c) (r+1)

o —1 (ﬁl,C)

“ = Arﬂ' (Atr+le) 80’ r=0,1,2,... .

o (A+rle) (r+1)!

2 Hence {gn} is GPED (A,t,c,A). This completes the proof.

-

:-. Remark 3. Theorem 2.2 is an improvement over that of Janardhan

-1 and Rao (1982) in the sense that the condition of independence is 1
4 ‘ i
-:: weakened by (2.9). On the other hand, the special choice that

\'

an's are equal for at least two values of n puts a restriction
e on the sequence {a }. However, this latter condition can be
¥

avoided for the case when (ct+t) >0 as follows.

s R

=5

N e
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1f (aslbs) >d for some s>1, then (2.12) implies that
{ar: r=s,s+l,...} is increasing and tends to a limit, say a<A.

The equation (2.12) then yields that

T ) {1+0k(—)} =d I {1+°l'c(?)}’
r k=1 r k=1

where 0k and OL are smaller order functions of (1/r) uniformly for
k=1,2,...,r~1. The above equation implies that {ar/br} converges
to d. However, this leads to a contradiction since the monotonic
increasing nature of {a_: r2>s} implies that of {(a:/Br): r >s}

and hence it is impossible that

ar a
lim == = d<b—s.
> i [

Hence, we cannot have s such that (as/bs) >d. By symmetry, we can
also conclude that it is impossible that (as/bs) <d for some s.

Consequently (As/bs) = d for all s> 1.

Remark 4. As corollaries of Theorems 2.1 and 2.2, one can obtain
characterizations of many well known discrete probability distri-
butions by special choices of {(an,bn),rpio}. For instance an

improved version of Chatterjee's (1963) result is as follows:

‘

Theorem 2.3. Let (X,Y) be such that

r
;:.’ S(r]r) = hrarbo/cr,
" -1
:i S(r|r+l) h 1 arb1/Cr+1’
'a
and =2

S(rlr+2) = ho1 3B /c o

r=0,1,2,...

where a ,b ,c and h are defined in Theorem 2.2. 1If
n’n n n

VW

A
B e
et

P (Y=r|X=Y) = P(Y=r|X=Y+1) = P (Y=r|X=Y+2), r=0,1,...,

then
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n
h = Ax"  and g, = (8g/cyle By n=1,2,...,

for some constants A, a and B >0,
Theorem 2.4. Let (X,Y) be such that

a (A+rt)(ar+rt)(r’c)

S(r|x) = , t=0,1,2,...

(ar+rt)A(A+rt)(r’c)

————

(r,c)
ar+lbr+1(A+r+lt)(ar+1+rt)
(r+1,¢)

S(r|r+l) = (r+1) —
(a_, .+rt)A(A+r+lt)

r+l

b_(a+7t) (b +1t) (r,c)

s(0|r) =
(br+rt)A(A+rt)r’c

(A++1t) (b, +rt) (r,c)
(r+l,c)

3 1101

(b 1_‘_1+rt)A (A+r+lt)

S(1|r+l) = (r+l)

where an, bn and A are as defined in Theorem 2.2. If the asser-
tion (i) of Theorem 2.3 is valid, then a = constant independently
of n, and {gn} is GEPD (A,t,c,A) for some A >Q,

1/2
= = ! = -
Remark 5. If b =a 1/n! n>0 and b [pn/(l pn)] for all

n > 1 in Theorem 2.3, then we obtain Chatterjee's (1963) result.

3. SOME VARIANTS OF MORAN'S RESULTS

Woodbury (1949) has considered a general Bernmoulli scheme in
which the probability of a guccess at a given trial depends on
the number of successes in previous trials. Let P.€ (0,1) be the
probability of a success in a trial given that (r-l) of the ear-
lier trials resulted in successes. If C(r|n) denotes the prob-
ability of r successes in n trials, then it is easy to check

the following

-----------
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C(r|n) =p, C(r-1{n-1) + (l-pH_I)C(_rln—l)_; r=0,1,...n;n>1

'y

v s«

with

LY

A, A R
2.

c(r|0) =Sgp» T =0,1,.., (3.1)

where Gij is the Kronecker delta. Many authors have studied this
- model. Suzuki (1980) has given a historical sketch of this model
and studied in some detail the special case where P.=P for r<m
and P.=YP for r>m, m>1, where p and y are real numbers in
(0,1). This model can be generalized to the case where the
probability of a success depends also on the number of trials.

If Prn denotes the probability in such a case, then we have
9

c{r|n) =P nC(r—lln-l) + ('l-prl-l n)C(r|n--l); r=0,1,...03n3,
»

with

C(r0) =5, , r=0,1,.... (3.2)

Now, let Z ,Zz,... be a sequence of non-~degenerate indepen-

1
dent (0-1 valued) Bernoulli random variables and let (X,Y) be as

defined in the previous section such that P(X=0) = g < 1 and

S(rin) = P( !i Z,=r), r=Q,1,...,n (3.3)
. i=1 *

for all n for which g,> 0. 1If {Pn}:=l is the corresponding se-
quence of the probability of success, then it is not difficult to
see that S(r|n) given in (3.3) satisfies (3.2) with pr,n =P, for
all r=0,1,...,n and each n (i,e., the one in which the probab-

_'::: ility of success depends only on the number of trials). Kimeldorf

result.

Theorem 3.1. Let X,Y,Z ’ZZ”" be as defined above such that pn

1
are equal for at least two values of n. Then

. et al. (1981) used this model and they established the following
3

I:‘.: P(Y=r} X=Y) =P (Y=r|X=Y+1), P(X~-Y=r|Y=0)=P (X~Y=r|¥=1);
o r=0,1,..., (3.4)

..........................

.........
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iff P, " constant independently of n>1 and 2, {s a Poisson dis-
ribution.

The following theorem shows that a similar result holds when
the survival distribution is taken as the one resuiting from
Woodbury scheme for Bernoulli trials.

Theorem 3.2. Let (X,Y) be a random vector with nonw~negative

integer-valued components such that
P(Y=r,X=n) = C(rln)gn », T =0,1,...,0; n>0,

where {Cn(r!n): r=0,1l,...,n, n>0} is as defined in (3.1) and
&g <1l. Suppose that for at least two distinct integers n, and
n,, we have p = p . Then the following are equivalent:

2 n, a,

(i) Condition (3.4) is wvalid.
(ii) p, = constant independently .of n and {gn} is Poisson.

(iii) Y is independent of X~Y.

Proof: It is not difficult to see (i) => (iif) => (i) and hence
it is sufficient to show that (i) => (if). Suppose (i) is wvalid.

Then we have

C(rlr)gr/PGXéY) = C(r|r+1)gr+1/PCX-Y+1)
and r =0,1,... (3.5)
CO|r)g /B (¥=0) = C1|r+l)g_,,/P(¥=1) .

From (3.1) it follows inductively that

T
Clxlr) = 1 Py
i=1
r r+l
Crir+l) = T p, ) (-p,)
i=1 = j=1 r=1,2,... .

c|r) = (-p "

r+l
ctlr+1) = vy | a~p)1Fep )t
1a1 2

Hence (3.5) implies that

9




+1 r+l
I amg) = [ [Q-p)/=p1" ra1,2,...
i=1 i=1

for some ¢>0. This leaus to
r
l-pr.'l = c[(l—pz)/(l‘Pl)] P r-2,3,o.. .

Since p = P, and n, ¥ n,, we must have P, " Pl and therefore

n
P, =P, %or ali r=2,3,... . Substituting in (3.5), we see that

By ™ Agr/(r+1), where A = [P(XpY+1)/P(XpY)](1-p1). This yields
. that X has a Poisson distribution.

Theorems 3.1 and 3.2 raise the question concerning the valid-
ity of the result when the survival distributions are obtained
from a generalized Woodbury's model (i.e. when the probabilities
of successes are allowed to depend on both the number of successes
and the order of trials). The answer to this question is in the
- atr-lc in (3.2) for

r’n ——p—

at+b+n-1c
some some c >0, then induction argument implies that for each

n>0, C(r n) is MPED (n,a,b,c,0). Hence Theorem 3 applies for

negative, For example, if we set p

any ¢ >0 but Prg is not independent of either r or n.
’

4, AN EXTENSION OF PATIL-SESHADRI RESULT

Patil and Seshadri (1964) have given characterizations of
some discrete and continuous distributions based on a specific
form of the conditional distribution of Y given X and indepen-
dence of Y and X-Y. Recently, Panaretos (1982) extended the
Patil-Seshadri result by considering only partial independence of
Y and X~-Y. 1In the following theorem, we prove the basic results

of Panaretos under less restrictive conditionms.

Theorem 4.1. Let (X,Y) be a random vector of non-negative real
valued components such that P(X >Y) = 1, and there exist integers
n, =0 . Ny <eeecny (with r.b_ll such that P(Yg_ni-ni_ll »Q,
i=0,1,...,r, and every integer in (nr,nr+nri), where n_, is the

minimum of (ni-n ) over 1<i<r, is contained in the semigroup

i-1
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generated by {0,1,...,nr}. Also assume that a version of the con-
~itional distributions {{S(m|n)}} is such that S(mlm-l-ni) >0 for
i=0,1,...,r and m = 0,1,...,YR, the right extremity of the dis-
tribution of Y. Then the condition

P (Y=m| X~Y=0) = P (Y=n)| X=Y=n), m=0,1,...5i=1,...,r (4.1)

implies that

n
P(X=n) = P(X=-0)cnk . n-l,...,nl_+YR
for some sequence {cn} determined uniquely by {{S(m|n)}} and some

positive A,

Proof. The condition (4.1) implies that

8,S(n|n) gmiS(mlml—ni)
P(X=Y) P(X=Y+a) » m=0,1,...,Y05 i=1,...,r. 4.2)

Define for 0_<_n§nr+YR

{l if gn=0
u =
n

0 if gni‘O.

Then ‘it follows from (4.2) that un-O on {nr,nr+1,...,nr+nir},
and hence u =, for all n. Since there is at least one positive

[
g, for Oininr+Yr', in view of P(X=Y) >0, we can then conclude

gn>0 for all ne¢ {0’1""’nr+Yr}'

From (4.2), we have the following identity with both sides
positive

. 8
Sm1 _ S (w#+1|m+1+n ) S (m|m) mtl+n, . .3
g, S (o+l | mt+l) S(mfmi) 8rtn

i

Define now for 0 <n o+ -1
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1if n=20,

the Vo corresponding to the minimum of
m<n such that (gm+1/gm) = c(m,n) (gn+l/gn)

vV = for some c(m,n) determined uniquely by
{S(+|+)} 1f such a representation is possible

and n > 1,

max Vv_+1 if the representation is not
0<m<n
possible and n>1.

Now, essentially the same argument as in the case of {un} implies

than v =V for all ne {0,1,_...,nr+YR-1}. Consequently, it fol-

lows that for every l1<n< nr-!-YR-l

g g
+ -

—otl [c(m,n)] 11
8, 5

which implies the required result with A = (gllgo) for

2<n <n +Y The result for n=1 easily follows.

RO
Remark 6. If S(m|n) is taken to be of the form ab ./c,» then
the condition on S(m|n) in the theorem reduces to am>0 for all
Oj_miYR and bo, bn ,...,bn> 0 with other

b i's non-negative.
r
In that case, clearly (4.1) implies that

[§

n
P(X=n) =P (X=0) (cn/co)x » 0=0,1,...,0 #¥p,

for some A >0, where {cn} is the convolution of {an} and {bn}.
Remark 7. If we replace in the Theorem, the condition that every
integer in (nr,nr+nri) is contained in the semigroup generated
by {O,nl

i=]1,...,r, is unity, the result does not remain valid.

,...,nr} by that the largest common divisor of ni-ni-l’
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